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This paper outlines a novel approximate model for determining the pressure drop of laminar, single-
phase flow in slowly-varying microchannels of arbitrary cross-section based on the solution of a channel
of elliptical cross-section. A new nondimensional parameter is introduced as a criterion to identify the
significance of frictional and inertial effects. This criterion is a function of the Reynolds number and geo-
metrical parameters of the cross-section; i.e., perimeter, area, cross-sectional polar moment of inertia,
and channel length. It is shown that for the general case of arbitrary cross-section, the cross-sectional
perimeter is a more suitable length scale. An experimental investigation is conducted to verify the pres-
ent model; 5 sets of rectangular microchannels with converging-diverging linear wall profiles are fabri-
cated and tested. The collected pressure drop data are shown to be in good agreement with the proposed
model. Furthermore, the presented model is compared with the numerical and experimental data avail-
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able in the literature for a hyperbolic contraction with rectangular cross-section.
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1. Introduction

The concept of flow through microchannels with gradually
varying walls forms the basis of a class of problems in microfluidics
which has applications in micromixer design [1-5], accelerated
particle electrophoresis [6,7], heat transfer augmentation in micro
heat sinks [8-10], flow through porous media [11-15], blood flow
in the context of biomechanics [16], preconcentration and separa-
tion of molecules [17-19], and polymer processing [20,21]. In most
of these applications, it is required to obtain a reasonable estimate
of the pressure drop in the channel for basic design and optimiza-
tion. As a result, pressure drop in microconduits with variable
cross-sections has been the subject of several investigations;
examples are [2,16,22-29].

A simple model to approximate the flow in a variable cross-sec-
tion microchannel is to assume that the fluid flow at each axial
location x along the channel resembles the fully developed flow
that would exist at that location if the channel shape did not vary
with x; this is usually referred as the lubrication approximation
[29,30]. The overall pressure drop is then calculated by integrating
the local pressure gradient over the total length of the channel.
Although good results can be obtained for creeping flow in mildly
constricted channels, this method is not very accurate when the
inertia effects become important or the amplitude of the constric-
tion is substantial [26]. To obtain more accurate solutions, asymp-
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totic series solution has been used by several authors for sinusoidal
tubes [16,23-26] and two-dimensional channels with sinusoidal
walls [22]. In this method, the solution of the Navier-Stokes equa-
tions is obtained by expanding the flow variables in powers of a
small parameter characterizing the slowly varying character of
the bounding walls, usually referred as perturbation parameter.
Although the asymptotic solution method gives more accurate re-
sults compared to the lubrication approximation, the final solution
for pressure drop and velocity field has a complex form even for
simple cross-sectional geometries such as parallel plates or circular
tubes.

Numerical and experimental methods are also used to investi-
gate the laminar flow along slowly varying cross-section channels.
Deiber and Schowalter [31] performed numerical study for the
creeping flow through tubes with sinusoidal axial variations in
diameter by using finite difference technique. The pressure drop
results were then compared with those of measured through an
independent experimentation. Hemmat and Borhan [32] used the
boundary integral method to solve the Navier-stokes equations
under the condition of creeping flow for axisymmetric capillary
tubes whose diameter varies sinusoidally in the axial direction. De-
tailed velocity and pressure distributions within the capillary were
obtained and the critical values of the geometrical parameters
leading to flow reversal are reported.

As a result of recent advances in microfabrication techniques,
microchannels with different cross-sectional geometries are fabri-
cated for both commercial and scientific purposes. Finding analyt-
ical solutions for many practical cross-sections such as rectangle or
trapezoid even for straight channels is complex and/or impossible.
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Nomenclature

a major axis of ellipse/width of rectangle (m)

ap radius/width of the reference channel (m)

A local cross-sectional area (m?)

Ao cross-sectional area of the reference channel (m?)
b minor axis of ellipse/height of rectangle (m)

Dy, hydraulic diameter, 4A/I" (m)

f fanning friction factor (-)

I polar momentum of inertia (m*)

I, specific polar momentum of inertia, I,/A% (-)

L channel length (m)

Q volumetric flow rate (m3/s)

R flow resistance, Ap/Q (Pa s/m3)

Ro flow resistance of a reference straight channel, (Pa s/m?)
R* dimensionless flow resistance, R/Rq (-)

R dimensionless frictional flow resistance (-)

R} dimensionless inertial flow resistance (-)

Re s, Reynolds number, pU%/u (-)

u x-component of the velocity field (m/s)
u local average velocity, Q/A (m/s)

v y-component of the velocity field (m/s)
w z-component of the velocity field (m/s)

é maximum deviation from ag (m)

€ aspect ratio, b/a (-)

€ perturbation parameter (-)

r local cross-sectional perimeter (m)

I'y cross-sectional perimeter of the reference channel (m)
7 characteristic length scale (m)

u viscosity (Pa s)

P density (kg/m?)

4 deviation parameter, §/ag (-)

There are few works in the literature which are dealing with the
hydrodynamics of laminar flow in slowly-varying channels of
non-circular cross-section [2,27,28]. Lauga et al. [2] used the per-
turbation theory for creeping flow in channels constrained geomet-
rically to remain between two parallel planes. Up to the first order
accuracy of the perturbation solution, they showed that the veloc-
ity components perpendicular to the constraint plane cannot be
zero unless the channel has both constant curvature and constant
cross-sectional width. They only reported the zeroth order of the
pressure gradient, which is identical to the lubrication approxima-
tion and only accounts for frictional effects. In another work, Gat
et al. [28] studied the laminar incompressible gas flow through
narrow channels with a variable cross-section using a higher order
Hele-Shaw approximation [33]. Their method shows improvement
over the classical Hele-Shaw solution [33], however, it does not ac-
count for the inertia effects that usually occurs in contractions or
expansions. Wild et al. [27] used the perturbation theory to calcu-
late the velocity and pressure distribution in an elliptical tube
whose cross-sectional area varies slowly with a given profile along
the axial direction. They [27] showed that the velocity distribution
has a complicated form even up to the first order accuracy, but the
local pressure gradient remains only a function of axial direction.

In the context of fluid flow in microchannels of arbitrary cross-
section, few analytical studies have been performed for straight
microchannels [34-36]. Yovanovich and Muzychka [34] showed
that if the square root of cross-sectional area is used in the defini-
tion of the Poiseuille number, more consistent results can be ob-
tained for various geometries. Zimmerman et al. [37] made an
assessment of hydraulic radius, Saint-Venant, and Aissen’s approx-
imations to determine the hydraulic resistance of laminar fully
developed flow in straight channels with irregular shapes. Compar-
ing the proposed approximations with the available exact solu-
tions, they showed that Saint-Venant, and Aissen’s
approximations are within 15% of the exact solution, whereas
using the hydraulic radius can be in error by as much as 50%. Later,
Bahrami et al. [35] introduced a general analytical model for the
prediction of the Poiseuille number based on the square root of
cross-sectional area in laminar fully developed flow along a
straight microchannel of arbitrary cross-section. Using a “bot-
tom-up” approach, they [35] showed that for constant fluid prop-
erties and flow rate in fixed cross-section channels, the Poiseuille
number is only a function of geometrical parameters of the
cross-section, i.e., cross-sectional perimeter, area, and polar mo-
ment of inertia. Their model was successfully validated against
the numerical and experimental data for a wide variety of geome-

tries including: hyperellipse, trapezoid, sine, square duct with two
adjacent round corners, rhombic, circular sector, circular segment,
annular sector, rectangular with semi-circular ends, and moon-
shaped channels [35,38]. In a recent paper, Bahrami et al. [36] ex-
tended their general model to slip flow condition in a straight
channel of arbitrary cross-section. Their model is shown to predict
the numerical and experimental results obtained from the litera-
ture with good accuracy.

The purpose of this work is to develop an approximate method
for the determination of the pressure drop of laminar, single-phase
flow in slowly-varying microchannels of arbitrary cross-section by
extending the previous models of Bahrami et al. [35] to slowly-
varying microchannels of arbitrary cross-section. Starting from
the solution of an elliptical cross-section [27], a generalized
approximate model is proposed to compute the pressure drop in
stream-wise periodic geometries, expansions and contractions.
To verify the proposed model, an independent experimental inves-
tigation is carried out for stream-wise converging-diverging chan-
nels of rectangular cross-section with linear wall. Further
validation is performed by comparing the results obtained from
the present model and those obtained experimentally and numer-
ically for a hyperbolic contraction of rectangular cross-section [21].
The proposed approach provides a powerful tool for basic designs,
parametric studies, and the optimization analyses.

2. Model development

We seek a solution for steady-state laminar flow of a Newtonian
fluid with constant properties in a slowly-varying conduit of arbi-
trary cross-section and wall profiles subjected to no-slip boundary
condition on the walls. A schematic illustration of this channel is
plotted in Fig. 1. Finding an exact analytical solution for such a
problem is highly unlikely, but approximations can be obtained
for a long channel in the form of a series in terms of a small pertur-
bation parameter, ¢. The idea is to take the advantage of the fact
that variation in the direction of flow, x, is gradual compared to
variation in the orthogonal directions; y and z. With ¢ is small, a
regular perturbation expansion for both velocity and pressure
fields can be written as [2]:

(u7 vvva) :Zgn(umvnvwmpn)v (1)

n=0

where u, v, w are the velocity components and p is the pressure. The
well-known perturbation approach [23-25] provides a method to
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I(x)

Fig. 1. (a) Schematic of a slowly-varying microchannel of arbitrary cross-section
with a general wall profile of g(x). (b) A reference straight channel with the cross-
sectional area and perimeters of Ay and I'g, respectively.

obtain the values of u,, v,, w, and p, by substituting Eq. (1) into the
momentum and mass conservation equations. Finding u,, v, wy,
and p,, for the general case of three dimensional flows in arbitrary
cross-section channels is impractical. Here, we use the perturbation
solution of fluid flow in a slowly-varying tube of elliptical cross-sec-
tion which is developed by Wild et al. [27] to propose a general
model for arbitrary cross-section microchannels with a given wall
profile. Elliptical cross-section is selected not because it is likely
to occur in practice, but rather to utilize the unique geometrical
property of its velocity solution.

Under the assumption of 2 « 1 where ¢ = ao/L;qy is the hydrau-
lic radius of a reference straight tube with the length of L, using the
perturbation solution of Wild et al. [27], and after some rearrange-
ments, the local pressure gradient for a slowly-varying conduit of
elliptical cross-section can be obtained from the following
relationship:

1dp 4u@*(x) +b*(x)] 200 {dA(x) /dx}

Qdx ne)b(x) A (%)
frictional

A(x) = ma(x)b(x),

(2)

inertial

where a(x) and b(x) are the channel local half-major and half-minor
axes, respectively; Q is the volumetric flow rate; A(x) is the local
cross-sectional area; uis the fluid viscosity; and pis the fluid den-
sity. For simplicity, we drop all (x) after this point. Noting Eq. (2),
the followings can be concluded:

e The pressure gradient at each axial location can be obtained
from the superposition of the frictional and the inertia terms.

o The frictional term in Eq. (2) resembles the laminar fully-devel-
oped flow in a straight channel of elliptical cross-section [39]
and is a function of the major and minor axes of the ellipse. This
is analogous to the lubrication approximation. One can follow
the same steps introduced by Bahrami et al. [35] to obtain the
local pressure gradient for slowly-varying microchannels of
arbitrary cross-section.

e The inertia term only depends on dA/dx and the cross-sectional
area but not the cross-sectional shape of the channel. In a con-
verging channel, dA/dx <0, the inertia term takes a positive
value while for a diverging channel, dA/dx > 0, the inertia term
is negative.

e The inertia term will vanish for any periodic profile, dA(x)/
dx = 0. This is because the higher orders of the perturbation
expansion are neglected, i.e., 2 < 1. It has been shown for sim-
ple geometries that the inertial pressure drop in a periodic
channel will be non-negligible for sufficiently high Reynolds
numbers or when the higher order terms in the perturbation
expansion, i.e., Eq. (1 ), becomes significant [26,37].

Using Eq. (2), the local Poiseuille number based on an arbitrary
length scale of % for slowly-varying microchannels of elliptical
cross-section, fRe,,, takes the following form:

P 4 dA/d
re, = (7 )12 -2 (500 1 :
frictional \—W
where
and
C(dp/dx) (1 (A
r=S (a0) <F> i
Rey:pu—g? (6)

where U is the local average velocity, I is the local cross-sectional
perimeter, and I = I,/A® with I, = [,(y? +z?)dA is called the specific
polar moment of cross-sectional inertia [35] and can be obtained from
the following relationship for an elliptical cross-section:

., 1+e
I’ = 7
P 4me (7)

where 0 < € = b/a < 1 is the aspect ratio of the channel cross-section
such that the e=1 leads to the circular cross-section. For other
cross-sectional geometries such as rectangular, rhombic, trapezoi-
dal, moon-shaped, triangular, circular segment, and annular sector,
a comprehensive list of relationships can be found in Refs.[35,40].

Consistent with the model developed by Bahrami et al. [35] for
straight microchannels of arbitrary cross-section, the present
approximate model postulates that for constant fluid properties
and flow rate in a variable cross-section channel, the local fRe,
for an arbitrary cross-section channel is only a function of the local
specific polar momentum of cross-sectional area, I, #/I" and the
ratio of (A~1dA/dx).

Selection of the characteristic length scale is an arbitrary choice
and will not affect the final solution. However, a more appropriate
length scale leads to more consistent and similar results, especially
when general cross sections are considered. For instance, a circular
duct is fully described by its diameter; thus the obvious length
scale is the diameter (or radius). For non-circular cross sections,
the selection is not as clear. Possible length scales are: (i) the
hydraulic diameter Dy, = 4A/T", which has been conventionally used
in many textbooks [39], (ii) effective radius defined as the average
between the radius of largest inscribed circle and the radius of the
circle with same area [41], (iii) the square root of the cross-sec-
tional area,v/A, which has been widely used for non-circular heat
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conduction and convection problems [35,36,42,43], and (iv) the
perimeter of the cross-section, I".

Fig. 2 shows the comparison of the frictional Poiseuille number
for elliptical and rectangular cross-sections based on the hydraulic
diameter, Dy, perimeter, I', and the square root of cross-sectional
area, V/A. It can be observed that the hydraulic diameter does not
lead to a consistent trend for rectangular and elliptical cross-sec-
tions; the maximum difference is 30%. However, using either
perimeter or the square root of cross-sectional area as the charac-
teristic length scale leads to similar trends for the frictional Poiseu-
ille number with the relative difference of less than 4% and 8%,
respectively. Similar to the frictional Poiseuille number, the
hydraulic diameter leads to a large relative differences between
the inertial Poiseuille numbers of elliptical and rectangular cross-
sections; the maximum relative difference is 24%. The square root
of cross-sectional area leads to the relative difference of less than
11% between the inertial Poiseuille numbers of elliptical and rect-
angular cross-sections. However, when the cross-sectional perime-
ter is used as a characteristic length scale, Eq. (3) clearly shows that
for constant fluid properties, flow rate, and geometrical parame-
ters, there is no relative difference between the inertial Poiseuille
numbers of the elliptical and rectangular cross-sections. These re-
sults suggest that using the cross-sectional perimeter as the char-
acteristic length scale for overall Poiseuille number leads to better
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accuracies. Therefore, we use .# = I' through all our calculations.
As a result, Eq. (3) reduces to:

fRey = 327°I; — % (dAAd") 8)

It should be noted that one can convert the Poiseuille number based
on different length scales using the following relationships:

fRe ;= (@)]Rerv

A 9)
fReD,, = <F>fRer~

For many applications, it is desired to calculate the total flow resis-
tance of the channel. Using Eqs. (4) and (8) and integrating over the
length of the channel, the total flow resistance of a slowly-varying
microchannel of arbitrary cross-section, shown in Fig. 1, can be ob-
tained from the following relationship:
R*Ap/Q7167t2u/X2£dx+pQ 11 (10)

o A A A

where A2 and A? are the microchannel cross-sectional area at x; and
X, locations, respectively. It is beneficial to normalize the flow

25 = 1000 -
(a) b ellipse (b) 3 ellipse
K — — — - rectangle 900 | — — — - rectangle
23 F\ N
E z 800 |
2F F z
= 2 e0f Y 3 Y
d‘g 3 Qg 500 g
S~ 18;_ ~ 3
17F 400 :—
16F 300 |
15 F -
E 200 F
14 -
135_ 100 :_ _____________
PPy N T RS S F
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
e=b/a e=b/a
100
(C) b ellipse
90 — — — - rectangle
80 F
70
3 F
s 60F
N
S 50F
QQ‘.% o
S~ 40 E
30F
20F
10 F
b [
0 0.25 0.5 0.75 1
e=b/a

Fig. 2. Effect of the selection of (a) hydraulic diameter, Dy, (b) perimeter, I', and (c) square root of area,v/A as characteristic length scale on the relative difference between the
frictional Poiseuille numbers of rectangular and elliptical cross-sections. The maximum differences are 30%, 8%, and 4%, for the hydraulic diameter, the square root of cross-

sectional area, and the perimeter of cross-sectional area, respectively.
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resistance with that of a straight reference channel with the specific
polar momentum of inertia of I, length of L, and cross-sectional
area of Ag. Thus:

% L/Lo . . Rer, (A/To\(1 1
R =R/Ry = p/p0 gy Rero. ( 0 0) 1Y) g
Ro= ] 42 16m2L,\ L )J\AZ A?) an

1

Rf R}

where x* =x/L,A] = A1/Ao and A = A;/Ao. In Eq. (11), I'p is the
perimeter of  the reference channel cross-section;
Rer, = pQTI'o/uAp; and Ry can be computed from the following rela-
tionship [35]:

Ry = 167‘52/112—;)L. (12)
0

Eq. (11) is a general relationship that accounts for both frictional

and inertial effects on the flow resistance of fluid flow in slowly-

varying microchannels of arbitrary cross-section. Dividing both

sides of Eq. (11) by the frictional flow resistance, R, one obtains:

R R;

— =1+ (13)
Ry Ry

Eq. (13) can be rearranged as follows:

R*

R 1+ PRer,. (14)

The dimensionless parameter @ appears in Eq. (14) is purely geo-
metrical and defined as follows:

A*Z A*Z Ao /T
L () (15)

L.
1677:2/A—fzdx

X1

Eq. (14) implies that the inertia term in a slowly-varying micro-
channel can be neglected under the following condition:

®Rer, < 1. (16)

3. Experimental procedure
3.1. Chemicals and materials

Distilled water was used as the testing liquid. SU-8 photoresist
(Microchem, Newton, MA) and diacetone-alcohol developer solu-
tion (Sigma-Aldrich, St. Louis, MO) were used in the making of
the positive relief masters by the procedure outlined below. Poly-
dimethylsiloxane (PDMS) casts were prepared by thoroughly mix-
ing the base and curing agent at a 10:1 ratio as per the
manufacturer’s instructions for the Sylgard 184 silicon elastomer
kit (Dow Corning, Midland, MI).

3.2. Microfabrication

The PDMS/PDMS converging—diverging and reference straight
microchannels were manufactured using the soft lithography tech-
nique [44]. Briefly, photomasks were designed by AutoCAD soft-
ware (www.usa.autodesk.com) and printed with a 3500DPI
printer (Island graphics Ltd., Victoria, BC). Masters containing the
desired microchannel pattern have been made by spin coating of
SU-8 negative photoresist on a glass slide to the desired nominal
thickness. Both converging-diverging and reference channels were
fabricated on the same master. Prior to the spin coating of SU-8,
the glass slide was cleaned with isopropyl alcohol (IPA) and dried
by high pressure air. The photoresist film was then hardened
through a two-stage direct contact pre-exposure bake procedure

(65 °C for 5 min and 95 °C for 30 min) and exposed to UV light
for 100 s through the mask containing the channel pattern. A two
stage post-exposure bake procedure (65 °C for 5 min, 95 °C for
30 min) was then used to enhance cross-linking in the exposed
portion of the film. The slide was then placed in quiescent devel-
oper solution for 10 min to dissolve the unexposed photoresist,
leaving a positive relief containing the microchannel pattern. Li-
quid PDMS was then poured over the master and exposed to vac-
uum condition (1 h) to extract all the bubbles in it and cured at
85 °C for 15 — 20 min yielding a negative cast of the microchannel
pattern. An enclosed microchannel was then formed by bonding
the PDMS cast with another piece of PDMS via plasma treatment.
Each variable cross-section microchannel contained ten converg-
ing-diverging modules with linearly varying wall with the module
length of 3 mm * 0.02 mm.

Dimensions of the channel were measured by an image process-
ing method described in [38]. Briefly, an inverted microscope (Uni-
tron, Commack, NY) equipped with 5 X, 0.12 N.A. and 10 X, 0.4 N.A.
objectives and a CCD camera was used. The low magnification
objective was used to measure the length of each module. Images
of the channels were taken at three different locations and then
imported into an image processing software (Zarbco video toolbox,
Ver. 1.65), which was calibrated with an optical ruler (Edmund op-
tics, Barrington, NJ), to measure the in-plane geometrical parame-
ters. For each microchannel, average values are reported. To
determine the channel depth, the pressure drop along each straight
reference channel was measured using the method described later
and Eq. (12) with constant geometrical parameters was used to
compute the channel depth. The geometrical parameters are re-
ported in Table (1).

3.3. Experimental procedure

Schematic diagram of the experimental setup is depicted in
Fig. 3. Controlled measurements of the flow resistance for flow
through a microchannel were performed using a syringe pump
(Harvard Apparatus, Quebec, Canada) with Hamilton Gastight glass
syringes, which provides a constant flow rate with the accuracy of
+0.5%. A range of Reynolds number from Rer, = 10 — 75 (corre-
sponding Reynolds number based on the hydraulic diameter falls
in the range of 2 — 15) was covered by changing the volumetric
flow rate from 30 L/min to 100 pL/min.The accuracy of the nominal
flow rate was independently evaluated by weighting the collected
water over the elapsed time. It was observed that the relative dif-
ference between the measured and nominal flow rate was less than
4% in our experiments. This value is taken as the uncertainty in the
flow rate readings. The pressure drop along the flow channel was
measured using a gauge pressure transducer (Omega Inc., Laval)
with the accuracy of +0.004 psi (+30 Pa) and a nominal pressure
range of 0 — 5 psi. This pressure sensor was connected to the en-
trance of the microchannel using a 1 cm-long piece of plastic tub-
ing with an inner diameter of 3 mm. From the exit of the
microchannel, 2 cm of the same kind of plastic tubing released
the fluid into a waste container at atmospheric pressure. The con-
tribution of the connecting tube is calculated to be less than 0.01%
of the total measured pressure drop. Measured pressure was mon-
itored and recorded with a computerized data acquisition system
(Labview 8.5, National Instrument, www.ni.com). The flow was
considered to have reached a steady state condition when the
readings of the pressure drop did not change with time. Due to
the fluctuations of the volumetric flow rate provided by the syringe
pump and formation of the droplets at the tube exit, periodic pres-
sure fluctuations were observed in the pressure vs. time graph,
even for the steady-state condition. Average values of these fluctu-
ations are considered in this experiment. For a given channel, the
measurement of pressure drop was repeated three times for each
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Table 1
Experimental parameters in present work.

Channel # 2ap (um) 2b (pm) Dpo (Lm) I'o (um) L (mm) €o0=Dblay &=dlag

1 311 78 125 780 3 0.25 0.27

2 286 93 140 760 3 0.32 0.42

3 283 62 103 691 3 0.22 0.53

4 389 36 66 850 3 0.09 0.09

5 286 63 104 700 3 0.22 0.42

Q=30 — 100 pL/min; Ap = 0.86 — 24.13 kPa.

flow rate to ensure the reproducibility of the results. An arithmetic
averaging method [45] was performed to determine the final re-
sults. The maximum difference between the averaged and the ac-
tual values was observed to be less than 1.5%. In this experiment
the effects of the developing length, minor losses, viscous heating
and channel deformation were neglected [38]. The experimental
values of R; were computed from the following relationship:

e _ (8p/Q)

P (Ap/Q)y’

where the parameters with “0” subscript correspond to the mea-
sured flow resistance of the reference straight channel. The uncer-
tainty associated with the measured R, is calculated from the
following relationship [45]:

1/2
Ve _ [ (Vw) | (Yo’

R Ap Q ’
where . /R" is the relative uncertainty of the dimensionless flow

resistance, Y/, is the uncertainty associated with the pressure
measurement is £0.25% of the full scale, i.e., £30 Pa, and 4 is the

(17)

(18)

transducer microchip assembly

syringe pump

D]mJ

waste

200 pim

one module of
converging-diverging channel

|:|“O
O

power supply

Fig. 3. Schematic diagram of the experimental setup for pressure measurements in
converging-diverging channels. The inert in the module of converging-diverging
channel is Rhodamine B, for clarity.

uncertainty associated with the flow rate provided by the syringe
pump with /o/Q = + 0.04. The calculated uncertainties are reported
as error bars in the experimental results.

4. Results and discussion

In this section, the present model is compared against the
experimental data obtained in this work for stream-wise periodic
channels of rectangular cross-section and numerical and experi-
mental data collected from the work of Oliveira et al. [21] for a
hyperbolic contraction.

The converging-diverging channels were fabricated with a lin-
ear wall profile defined as follows, see Fig. 4(a):

[1-¢@x +1)), -1/2<x <0,
[1+¢&4x —1)), 0<x<1/2,

where the origin is located at the channel throat, a* is the channel
with normalized with respect to the staight reference channel with
the with of ag; x*=x/L is the normalized coordinate in the axial
dimention with respect to the module lenght of L; ¢ = d/apis the
deviation parameter which shows the amount of deviation from a
straight channel with the average width of a,. For such a geometry,
the inertia term in Eq. (11) is eliminated because A3 = Aj]. Specific
polar moment of inertia for a rectangular cross-section microchan-
nel can be obtained from Ref. [40]; thus one can calculate the ratio
of I,/I,, as follows:

a =ax)/ap = { (19)

. a +e
L)L, =——2, 20
p/ p,0 a*(l +€%)' ( )
where similar to an elliptical cross-section channell, € = b/q, is the
local channel aspect ratio, €g = b/ag is the aspect ratio of the straight
reference channel, and a. Dimensionless cross-sectional area for a
rectangular cross-section can be obtained from the following
relationship:
A =a, (21)
where the ratio of a/ag can be obtained from Eq. (19). Substituting
Egs. (21) and (20) into Eq. (11) gives:

a+e .

: (22)

172
R :/ dx
Y 1+€%

g

Fig. 4. Schematic of the studied wall geometries: (a) stream-wise periodic wall with linear profile and (b) hyperbolic contraction.
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Fig. 5. Experimental data for stream-wise periodic geometry with linear wall: (a) variation of the data with respect to the Reynolds number, the symbols are the experimental
data and the lines represent the values predicted by Eq. (23); (b) experimental data vs. proposed model. Each symbol corresponds to one channel, the solid line shows the
proposed model and the dashed lines are model +5%. Note that the range of Reynolds number based on the hydraulic diameter is less than 15.

Integrating Eq. (22) and after some simplifications, the dimension-
less flow resistance of a rectangular microchannel cross-section
with a linear wall profile can be obtained from the following
relationship:

2¢€2+ (1 - &)%In (1=
o2t 22) <H). (23)
261 &) (1+€3)

Fig. 5(a) shows the variation of experimental data for Rf with Rey-
nolds number. For clarity, the results are only plotted for three sam-
ples. The geometrical parameters for each channel are shown in the
plot. In agreement with the proposed theory, the trend of data
shows that R; is an independent function of the Reynolds number.
Thus for each microchannel, the average value of R* over the Rey-
nolds number is taken and plotted against the values obtained from
the compact relationship of Eq. (23) in Fig. 5(b). Good agreement
between the model and experimental results can be observed.

4
present model
35k A experimental [2]]
! 0 numerical [21 *
; 2 Ri<R
3 -
25F
*CE\ !
> 2k
~ i
15F
d: : )
[ friction dominant ! / :
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[ L ! R |
107 10" 10°
A=PRe,,

Fig. 6. Comparison of the theoretical model to experimental and numerical results
from Oliveira et al. [21]. The solid line corresponds to the proposed model, Eq. (25)
which includes both frictional and inertia terms, and delta (A) and circular (O)
symbols are the experimental and numerical data, respectively. Two asymptotes of
friction dominant and inertia dominant regions are shown in the plot by dashed
lines.

A hyperbolic contraction as shown in Fig. 4(b) is defined as
follows:

1
T+(B—1x’

where a* is the channel with normalized with respect to the maxi-
mum width of apmax;f = Gmax/Amin; Gmin 1S the minimum width of the
channel; and L is the channel length. For such a geometry, both fric-
tional and inertia terms exist. Following the same steps explained
for the linearly varying wall microchannel the total dimensionless
flow resistance can be obtained from the following compact
relationship:

2(8-17 +(F + 1)@ p?| (5 + 1)Inp
4(p-17%(1+€3)

3(8+1)(Inp)*€0/En
1672(f — 1) (1 + €2)(1 + &)

Fig. 6 shows the comparison between the experimental and numer-
ical data obtained by Oliveira et al. [21] for a hyperbolic contraction
defined by Eq. (24) with rectangular cross-section and the proposed
model, Eq. (14). The geometrical and flow conditions used by Oli-
veira et al. [21] are listed in Table (2). The present model illustrates
good agreement with the data; the relative difference between the
data and the compact relationship of Eq. (25) is less than 8%. Three
regions can be identified in Fig. 6 based on the value dimensionless
parameter A = ®Rey,:

a = a(X*)/amax = (24)

R =

Rer,

. (25)

0

(i) Friction dominated, A4 < 1, the flow is purely frictional and
the lubrication theory gives accurate prediction of the pres-
sure drop.

(ii) Transitional, A4 ~ O(1), both frictional and inertial effects
should be taken into account.

(iii) Inertia dominated, A > 1, the inertial effect is dominant,
thus the effect of wall profile becomes negligible and the
flow resistance can be obtained by computing the cross-
section geometrical parameters for the reference channel,

Table 2
Geometrical and flow conditions used for the hyperbolic contraction.
Parameter  dpmax min b Iy L € B Rerp
(pm) (pm)  (pm) (pm)  (pum)
Value 400 19.9 46 217 382 07 201 20-160
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inlet and outlet cross-sectional area, and the Reynolds num-
ber, see Eq. (11).

As an example, the data obtained from [21] fall in the transi-
tional region which means that considering the lubrication approx-
imation will lead to an underprediction of the pressure drop. One
should note that for a stream-wise periodic geometry, the inlet
and outlet cross-sectional areas for one module are the same, thus
A =0 and the inertial effect through the entire module of a con-
verging-diverging channel becomes negligible.

5. Summary and conclusions

The pressure drop of single phase flow in slowly-varying micro-
channels of arbitrary cross-section has been investigated in this
study. Starting from the available perturbation solution of an ellip-
tical cross-section and assuming that the second and higher order
perturbation terms are negligible, a general approximate model
has been developed. The proposed model presents improved accu-
racy over the lubrication approximation by taking the inertial ef-
fect into account. An independent experimental study has been
conducted for microchannels with stream-wise periodic geometry
and rectangular cross-section. Experimental results have been
used to verify the proposed model. Further validation is performed
by comparing the model with the numerical and experimental data
collected from the literature for a hyperbolic contraction. The high-
lights of this study are as follows:

o Selection of the characteristic length scale does not affect the
flow regime or pressure drop. Using the cross-sectional perim-
eter or square root of area as a characteristic length scale in
the definition of the Poiseuille number leads to a more consis-
tent trend between different cross-sections. Since the cross-sec-
tional perimeter gives better accuracy, it has been used as the
characteristic length scale through our analysis.

For a slowly-varying microchannel of arbitrary cross-section,

the Poiseuille number of laminar flow of a fluid with constant

properties can be obtained from the superposition of frictional
and inertial terms. A dimensionless parameter is introduced
to determine the importance of each term.

e Comparison with experimental and numerical results shows
good agreement between the proposed model and the collected
data. It has been observed that for a hyperbolic contraction,
using the lubrication approximation underestimates the pres-
sure drop. However, taking the inertia term into account by
the proposed model gives excellent improvement over the
lubrication approximation.
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